Uniform flow
- 1 What is uniform flow?
- 2 Normal flow
- 3 Momentum analysis
- 4 Chezy’s formula
- 5 Manning’s formula
- 6 Exercise 4.1
- 7 Homework: Exercise 4.2
- 8 Uniform flow computations
- 9 Slope classification
- 10 Flood control channels
1 What is uniform flow?
In uniform flow, the flow depth is the same at any section in the channel. It has no spatial variations in the flow depth.
2 Normal flow
Steady uniform flow is referred to as normal flow. Normal flow is a special case of uniform flow that is also temporally invariant.
In open channel design, we’re concerned about the determination of normal flow and normal depth.
Hydraulic resistance or surface roughness plays an important role in normal flow.
3 Momentum analysis
See Figure 4.1.
From $\sum\vec{F}$, \begin{equation} \gamma A\Delta L\sin\theta=\tau_0 P\Delta L \end{equation}
\begin{equation} \tau_0 =\gamma\frac{A}{P}\sin\theta=\gamma R\sin\theta\approx\gamma RS \end{equation} where $S=\tan\theta\approx\sin\theta$ for small values of $\theta$.
Considering $h_f=L\sin\theta\approx L\tan\theta=LS$ is the energy loss along the channel length $L$ and $\tau_0=\frac{f\rho V^2}{8}$ in pipe flow, \begin{equation} S=\frac{h_f}{L}=\frac{\tau_0}{\gamma R}=\frac{f\rho V^2/8}{\gamma R}=\frac{f}{4R}\frac{V^2}{2g} \label{eq:S} \end{equation} and we can see $4R$ replaces the pipe diameter in the Darcy-Weisbach equation $\frac{\Delta P}{L}=\frac{f}{D}\frac{\rho V^2}{2}$.
4 Chezy’s formula
Solving Eq. (\ref{eq:S}) for $V$ yields \begin{equation} V=\left(\frac{8g}{f}\right)^{1/2}\sqrt{RS}=C\sqrt{RS} \end{equation} where $C$ is the Chezy $C$.
5 Manning’s formula
Manning experimentally found \begin{equation} V=C_1R^{2/3}S^{1/2}=\frac{K_n}{n}R^{2/3}S^{1/2} \end{equation} where $n$ is Manning’s roughness coefficient and $K_n$ is 1 for $R$ in m and $V$ in m/s (SI units), and 1.49 for $R$ in ft and $V$ in ft/s (English units).
Note that the dimension of $\frac{K_n}{n}$ must be $L^{1/3}T^{-1}$, so for a value of $n$, $\text{m}^{1/3}\text{s}^{-1}=(3.28\text{ ft})^{1/3}\text{s}^{-1}=1.49\text{ ft}^{1/3}\text{s}^{-1}$, and hence $K_n=1.49$ for English units.
6 Exercise 4.1
Determine the normal depth and critical depth in a trapezoidal channel with a bottom width of 40 ft, side slopes of 3:1, and a bed slope of 0.002 ft/ft. The Manning’s n value is 0.025 and the discharge is 3000 cfs. Is the slope steep or mild? Repeat for n=0.012. Did the critical depth change? Why or why not?
7 Homework: Exercise 4.2
Please submit your full work.
8 Uniform flow computations
- Example 4.1
- Example 4.2
- Exercise 4.3
9 Slope classification
From Manning’s equation, we can obtain \begin{equation} S=\frac{n^2Q^2}{K_n^2A^2R^{4/3}}. \label{eq:S2} \end{equation}
For the rectangular channel, Eq. (\ref{eq:S2}) becomes \begin{equation} S=\frac{n^2Q^2}{K_n^2(by)^2R^{4/3}} =\frac{n^2q^2}{K_n^2y^2R^{4/3}} \label{eq:S3} \end{equation} and the Froude number is \begin{equation} \mathbf{F}^2=\frac{V^2}{gy} =\frac{Q^2}{gy(by)^2} =\frac{q^2}{gy^3}. \label{eq:F2} \end{equation}
Combining Eqs. (\ref{eq:S3}) and (\ref{eq:F2}) yields \begin{equation} S=\frac{n^2\mathbf{F}^2gyA^2}{K_n^2A^2R^{4/3}}=\mathbf{F}^2\frac{n^2gy}{K_n^2R^{4/3}} \label{eq:S4} \end{equation}
9.1 Critical slope for a very wide rectangular channel
For a very wide rectangular channel where $b\gg y$, $P=b+2y\approx b$ and $R=\frac{A}{P}\approx\frac{by}{b}=y$ and Eq. (\ref{eq:S3}) becomes \begin{equation} S=\frac{n^2q^2}{K_n^2y^{10/3}}. \label{eq:S5} \end{equation}
Combining Eqs. (\ref{eq:S5}) and (\ref{eq:F2}) yields \begin{equation} S=\frac{n^2q^2}{K_n^2\left(\frac{q^2}{g\mathbf{F}^2}\right)^{10/9}} =\mathbf{F}^{20/9}\frac{g^{10/9}n^2}{K_n^2}q^{-2/9}. \label{eq:S6} \end{equation}
For a critical flow, by plugging $\mathbf{F}=1$ and $S=S_c$, Eq. (\ref{eq:S6}) becomes Eq. (4.67) in the text: \begin{equation} S_c=\frac{g^{10/9}n^2}{K_n^2}q^{-2/9}. \label{eq:S7} \end{equation}
9.2 Limit slope for a rectangular channel
The minimum critical slope is called the limit slope.
For a rectangular channel, we can obtain the following equation by combining Eqs. (\ref{eq:S3}) and (\ref{eq:F2}): \begin{equation} S=\frac{n^2gy^3\mathbf{F}^2}{K_n^2y^2R^{4/3}} =\mathbf{F}^2\frac{n^2gy}{K_n^2R^{4/3}} =\mathbf{F}^2\frac{n^2gy}{K_n^2\left(\frac{by}{b+2y}\right)^{4/3}} =\mathbf{F}^2\frac{gn^2}{K_n^2}y\left(\frac{b+2y}{by}\right)^{4/3}. \label{eq:S8} \end{equation}
For a critical flow, plugging $\mathbf{F}=1$, $S=S_c$, and $y=y_c$ gives \begin{equation} S_c=\frac{gn^2}{K_n^2}y_c\left(\frac{b+2y_c}{by_c}\right)^{4/3}, \label{eq:S9} \end{equation} which is Eq. (4.68) in the text.
9.2.1 Finding the minimum critical slope
By differentiating Eq. (\ref{eq:S9}) with respect to $y_c$ and setting it to 0, we obtain \begin{equation} \frac{dS_c}{dy_c}=\frac{gn^2}{K_n^2}\left(\frac{b+2y_c}{by_c}\right)^{4/3}+\frac{gn^2}{K_n^2}y_c\frac{4}{3}\left(\frac{b+2y_c}{by_c}\right)^{1/3}(-\frac{1}{y_c^2})=0, \end{equation} \begin{equation} \frac{b+2y_c}{by_c}-\frac{4}{3y_c}=0, \end{equation} and finally \begin{equation} y_c=\frac{b}{6}, \end{equation} which can be plugged into Eq. (\ref{eq:S9}) to derive the limit slope equation: \begin{equation} S_L=\frac{gn^2}{K_n^2}\frac{b}{6}\left(\frac{6}{b}+\frac{2}{b}\right)^{4/3} =\frac{gn^2}{K_n^2}\frac{b}{6}\left(\frac{8}{b}\right)^{4/3} =\frac{gn^2}{K_n^2}\frac{4}{3}\left(\frac{8}{b}\right)^{1/3} =\frac{2.67g}{K_n^2}\frac{n^2}{b^{1/3}}, \label{eq:S10} \end{equation} which is Eq. (4.69) in the text.
$S_L$ is the minimum critical slope.
9.2.2 Relationship between the slope and limit slope
Dividing Eq. (\ref{eq:S8}) by Eq. (\ref{eq:S10}) yields \begin{align} \frac{S}{S_L}&=\mathbf{F^2}\frac{y}{2.67}\left(\frac{b+2y}{by}\right)^{4/3}b^{1/3} =0.375\mathbf{F^2}y\left(\frac{b+2y}{b}\right)^{4/3}b^{1/3}y^{-4/3}\\ &=0.375\mathbf{F^2}\left(1+2\frac{y}{b}\right)^{4/3}b^{1/3}y^{-1/3} =0.375\mathbf{F^2}\frac{\left(1+2\frac{y}{b}\right)^{4/3}}{\left(\frac{y}{b}\right)^{1/3}}, \label{eq:SSL} \end{align} which is Eq. (4.71) in the text.
Substitute $S_c$, $y_c$, and $1$ for $S$, $y$, and $\mathbf{F^2}$, respectively, to obtain \begin{equation} \frac{S_c}{S_L}=0.375\frac{\left(1+2\frac{y_c}{b}\right)^{4/3}}{\left(\frac{y_c}{b}\right)^{1/3}}, \end{equation} which is Eq. (4.70) in the text.
9.2.3 Slope for a given value of the Froude number
For a given value of $\mathbf{F}$, differentiate Eq. (\ref{eq:SSL}) with respect to $\frac{y}{b}$ to derive \begin{equation} \frac{d(S/S_L)}{d(y/b)}=\frac{0.375}{3}\mathbf{F}^2\left(1+2\frac{y}{b}\right)^{1/3}\left(\frac{y}{b}\right)^{-4/3}\left(6\frac{y}{b}-1\right) \end{equation} and set it to 0 to find $\frac{y}{b}=\frac{1}{6}$ that minimizes $\frac{S}{S_L}$ for a given $\mathbf{F}$.
Plugging $S=S_0$ and $\frac{y}{b}=\frac{1}{6}$ into Eq. (\ref{eq:SSL}) gives \begin{equation} \left.\frac{S_0}{S_L}\right|_\text{min}=\mathbf{F}^2. \end{equation}
9.2.4 Mild slope for all possible discharges for a given Froude number
See Figure 4.21. If $\frac{S_0}{S_L}$ is less than $\left.\frac{S_0}{S_L}\right|_\text{min}$, any slope $S_0$ remains mild for all possible discharges. So for a maximum allowed $\mathbf{F}_\text{max}$, we can show \begin{equation} \frac{S_0}{S_L}=\mathbf{F}_\text{max}^2 \end{equation} and \begin{equation} \mathbf{F}_\text{max}=\sqrt{\frac{S_0}{S_L}}, \end{equation} which is Eq. (4.73) in the text.
9.2.5 Example 4.11
A concrete-lined rectangular channel has a bottom width of 3.0 m and a Manning’s n of 0.015. The bed slope is 0.007, and the discharge is expected to vary from zero to 60.0 m3/s. Determine if the slope is steep or mild over the full range of discharges. At what slope would the channel be mild for all discharges?
10 Flood control channels
Flow becomes unstable near the critical depth, so we want to limit the design flow depth such that it is outside the range of 0.9 to 1.1 times the critical depth.
A freeboard is recommended to allow for uncertainties in channel designs:
- Concrete-lined rectangular channels: 2 ft (0.6 m)
- Concrete-lined trapezoidal channels: 2.5 ft (0.8 m)
- Riprap-lined channels: 2.5 ft (0.8 m)
- Earthen channels: 3 ft (0.9 m)
10.1 Best hydraulic section
We want to minimize the flow cross-section area for a given design discharge although there are other factors to consider.
For a given $Q=\frac{K_n}{n}AR^{2/3}S^{1/2}$, minimizing $A$ means maximizing $R$, which subsequently means minimizing $P$ for a given $A$. To find this condition, we solve $\frac{dP}{dy}=0$.
10.2 Example 4.12
A flood diversion channel must be designed to carry a peak flood discharge of 150 m3/s. The topography dictates a slope of 0.0005, and the channel is to be lined with float-finished concrete. The maximum right-of-way available is 25 m. Determine the dimensions of the channel. Assume that you’ll encounter a rock layer at a depth of 4.0 m.
10.3 Homework: Best hydraulic section
- Calculate the desirable Froude number range for rectangular flood control channels
- Exercise 4.35
Please submit your full work.