

NUMPY DATA MANGEMENT
By: Frederick Johnson Keller

Frederick Keller
Fjkell6446@ung.edu

GISC 3200K – Programming for Geo Sci and Tech, Dr. Huidae Cho
University of North Georgia – Oakwood, Gainesville

1

1 Abstract
 This paper discusses the data management and mathematical computations of CSV files using

Python and NumPy and compares that code to an R script. It will attempt to explain how to use the

NumPy module to import in a CSV file read it as a 2D array and manage the data within. The CSV files

used contain multiple records of GPS coordinates at different points and the software will manage the

data to create a table of averages of the GPS coordinates and compare them to a “True” points CSV file.

The paper also explains how some of the complicated tools can be used to simplify the problem and

achieve the desired goal. It will talk about the pros and cons of using NumPy instead of just working the

CSV as a basic Python array. This project idea stemmed from a project in another class and proved quite

useful in understanding aspects of both classes.

2 Introduction
 For the purpose of experiment replication by later colleagues I will briefly explain the

experiment that stemmed the idea for this NumPY Data Management project. I was assigned a class

project in a Global Navigation Satellite Systems (GNSS) class, and the project was to collect GPS

coordinates at certain spots around campus. The coordinates were first collected on each student’s

phone using the same app on iPhone (Coordinates) and another on Androids. The class was later given

Garmin etrex 20x GPS devices and told collect data using certain types of setting. The settings were

labeled as “a” for GPS only, “b” for GPS and WAAS, and “c” for GPS/GLONASS and WAAS. Together the

class collected about 1,200 GPS coordinates for the 11 points and the professor started introducing us to

R coding to crunch the data because an earlier homework assignment that required us to use Excel

proved very time consuming and frustrating. The solution was to automate the data management and

my professor showed us R and were later assigned to write R code as homework.

 As you may have guessed, I thought this would be easy, like copy n paste kind of easy with

minor changes and lot of research to explain the minor differences. I was horribly mistaken and quickly

found out R is the preferred data management language because it is a free, open sourced language

with lot of free to download packages that make specifying how to organize the data easy. It is just I am

in a Python programming course and I already proposed the idea so I figured maybe I can translate the R

code into a Python toolbox and use it in ArcGIS Pro. That was a bigger headache than I had anticipated

also, but I do encourage anyone who reads this to attempt to further my script and work it into a Python

toolbox.

3 Materials and Methods
I will not be listing the materials used to do the experiment described in the introduction

because this paper is about the R code being translated to Python not the difference in accuracy

between GPS systems. The materials used to create the Python script are:

 Windows 10

 Python v 3.8

 NumPy v 20.2.1

 Notepad ++

 Python window found in ArcGIS Pro

 Microsoft Excel

2

The methods used had to be thought out, tried, and rethought out again. As previously stated in

the latter half of the Introduction, I had originally proposed to translate the R code into a Python

toolbox. I found a few different commands to import the CSVs and they worked in the toolbox

and in a script.

I had originally started by creating a 2D array and import the data into my array and it

worked. I had managed to contain the data inside a self-made 2D array without completely

understanding how basic 2D arrays work in Python. For those who do not know, Python auto

cast all values in an array as a string, so you have to type cast each column with a for loop and

an if statement. Mine looked like this:

Figure 1 Python code, imports csv to a 2D array

3

 This worked and I was so happy, but it quickly started to show how difficult the rest of the

project would be. I do understand indexing and slicing basics, and they are not too difficult concepts to

comprehend. However, doing that on top of mathematical operations in a for loop can be a little mind

numbing. I had attempted a “for” loop, but I found from both some research and my professor that I

would need a nested for loop. My professor had proposed I run some code like this:

Figure 2 2D array sample code

The Nested for loop above uses independent objects N, E, and Z to hold each individual aspect of the

coordinate for every point recorded. I would now have 3 different single “for” loops to get averages for

all three: N, E, and Z and append them together with a module command that allows appending along

the axis = 1. Using axis = 1 appends them as columns, otherwise they may be appended as rows which

will ruin everything.

Here is where a big difference between R and Python starts to show and it is how the two

languages handle data in CSVs. Python requires the user to tell it what columns contain which data type

like float, int, or str. R has the same requirements but you can tell the system which data type to use

based of the columns header ID, where as in Python you would have to mark the column by its index. It

does not sound more complicated but think about if you had not made the GPS records CSV. You may

accidently miss index the column needed, in fact my project even had this problem.

The big problem here is dataset formatting. For example, my CSV headers are formatted as such:

PhonePoints.csv: Pt(1-11), Ob(1-9), Type, Device, N, E, Z

TruePoints.csv Pt(1-11), Ob(zeros), N, E, Z

As you can plainly see I have more columns in my phonepts csv than my truepts csv which means matrix

mathematics will not work. You can fix the number of columns by excluding “Type” and “Device” from

the data selection like in figure 1. One thing you should notice now, figure 1 is coded incorrectly and

4

pulls the data from columns “type” and “device” and puts them into columns N and E and tries to cast

them as floats.

Take a look at some code to see the syntax differences between the two, figures 3 and 4.

Figure 3 Sample of R code

Above is a sample of R code that is reading in a CSV and pulling specified data in a nested for loop. If you

look closely, you will notice that instead in indexing with numbers, the code is pulling data from columns

by the header ID. I found this to be a much simpler and direct way to index columns for a for loop let

alone a nested for loop. This also allows for extra columns in the original csv so you can process them as

is. The next sample is from the Python code I used:

Figure 4 - A for loop from the Python script

You can tell this one is much simpler since it only has one for loop. What you are seeing here is

the data being pulled based on the point ID. The goal is an average for each point and since each point

was recorded 9 times, I need the software to check for all Pt 1s Obs 1-9. You may also notice the

indexing at the end of line 21, it starts at 0 since Python is a zero-based counting system.

5

4 Results
 The Python script to make a table of point averages and compare it to the TruePoints worked

well. The results look a bit like this:

Figure 5 - results when comparing phone points to the True Points

5 Discussion
Discussing results table:

The resulting table in the previous section is remarkably interesting. The negatives may seem

strange or incorrect but since the coordinates are in NAD 1983 UTM Zone 17N format the table values

can be read as meters away. The negatives in the N column simply mean the point was xx.xxx meters

south while E column values can be read as xx.xxx meters west of the true point. I would also

recommend updating the file in Microsoft Excel and format the N, E, Z columns as numbers with only 3

decimal places lime such:

Table 1 - Tab delimited results table

-0.651 -1.106 0.495

-5.440 -0.441 0.316

-0.147 -0.622 0.365

-0.315 -1.514 1.087

2.025 0.534 0.118

1.083 -0.943 -0.746

0.795 0.554 -0.185

1.166 -0.895 0.029

2.240 -1.534 -2.144

3.562 -1.279 0.512

2.883 -2.237 -1.505

6

Code Discussion:

The only problem in the Python code presented is it cannot do as much as the original R script.

The R script was written to not only handle the PhonePoints.csv but also a GarminPoints.csv. The

complication lies in the GarminPoints.csv since it has a “Type” column with more than one string value.

The values differentiate the systems used to record the coordinates and the values are ‘a’ for GPS only,

‘b’ for GPS and WAAS, and ‘c’ for GPS, WAAS, and GLONASS systems. You can actually see this definition

in the code in Figure 3’s line 33, “& t.in[,’Type’] == TY =[m]),]. The object TY was defined earlier in the

script as a small array of values: [‘p’, ‘a’, ‘b’, ‘c’] so the values could be meticulously organized.

I tried fixing the problem myself but found it difficult to import all the data from the table and

type cast that single ‘Type’ column as strings. I also could not find any information about whether or not

the ‘&’ operator would work the same as it did in the R script. If it does then both CSV files can pass

through the for loop but if not separate for loops would be needed for the two CSVs (phone and

Garmin).

6 Conclusions
 The R script was more fluid and capable than my basic 2D array and my NumPy array because it

could differentiate the Type column string values. I am displeased I did not figure it all out before the

semester ended, but I am proud to say the Python code does what it was intended to do. I also enjoy the

idea that these two projects worked really well together to serve a common goal, education and

understanding. If someone else was going to improve upon my work I would recommend they figure

out more possibilities with NumPy to help sort through the Garmin file to pick out coordinates that are

typed: ‘a’, ‘b’, ‘c’ then average them and follow the work flow presented.

7

Code Samples:
I want to insert the data of CSV file (network data such as: time, IP address, port
number) into 2D list in Python.

Here is the code:

import csv
datafile = open('a.csv', 'r')
datareader = csv.reader(datafile, delimiter=';')
data = []
for row in datareader:
 data.append(row)
print (data[1:4])

pafpaf, screenname: et al. “Reading CSV File and Inserting It into 2d List in Python.” Stack

Overflow, StackOverFlow, 7 July 2014, stackoverflow.com/questions/24606650/reading-

csv-file-and-inserting-it-into-2d-list-in-python.

Example: Adding Matrices

To add, the matrices will make use of a for-loop that will loop through both the matrices given.

M1 = [[8, 14, -6], [12,7,4], [-11,3,21]]

M2 = [[3, 16, -6], [9,7,-4], [-1,3,13]]

M3 = [[0,0,0], [0,0,0], [0,0,0]]

matrix_length = len(M1)

#To Add M1 and M2 matrices

for i in range(len(M1)):

for k in range(len(M2)):

 M3[i][k] = M1[i][k] + M2[i][k]

#To Print the matrix

print("The sum of Matrix M1 and M2 = ", M3)

Output:

The sum of Matrix M1 and M2 = [[11, 30, -12], [21, 14, 0], [-12, 6, 34]]

So here ^ I am trying to have M1 and M2 == CSVs and M3 be our average tables, the question becomes.

Do I need the “len()” command since I know I want the average of Pts = 1:9?

 for i in range(len(M1[4],[5],[6])):

o for k in 1:9 :

8

o M3[i][k] = M1[i][k] + M2[i][k]

 Daidalos. “OPEN NOTEBOOKS.” How to Perform Mathematical Operations on Array

Elements in Python ?, 2 Aug. 2019, moonbooks.org/Articles/How-to-perform-

mathematical-operations-on-array-elements-in-python-/.

My Personal scripting, mid coding I took a snapshot.

I have scripted:

 import csv

 datafile = open('D:\Fall2020\Programming - GISC 3200K\Final Project\GNSS Data\PhonePoints.csv',

'r')

 datareader = csv.reader(datafile, delimiter=',')

 first = True

 data = []

 for row in datareader:

o if first:

 first = False

 colnames = row

 continue

o else:

 Pt = int(row[0])

 Ob = int(row[1])

 N = float(row[4])

 E = float(row[5])

 Z = float(row[6])

o data.append(row)

 print (data[1:4])

^ Resulted: Should I be concerned about the ‘###’ ?? seems to signal a str not a float.

I later found out the reason I had the quotes was because I had forgotten to append my new objects

together, so it was simply reading the CSV like normal which casts everything as a string.

9

References:

Na, The SciPy community. “Numpy.append¶.” Numpy.append - NumPy v1.19 Manual, The

SciPy Community, 29 June 2020,

numpy.org/doc/stable/reference/generated/numpy.append.html?highlight=numpy+append.

Intext: (The SciPy community numpy.append¶)

NA, The SciPy community. “Numpy.where¶.” Numpy.where - NumPy v1.19 Manual, The SciPy

Community, 29 June 2020, numpy.org/doc/stable/reference/generated/numpy.where.html.

Intext: (The SciPy community numpy.where¶)

NA, The SciPy community. “Numpy.genfromtxt¶.” Numpy.genfromtxt - NumPy v1.21.dev0

Manual, The SciPy Community, 28 June 2008,

numpy.org/devdocs/reference/generated/numpy.genfromtxt.html.

Intext: (The SciPy community numpy.genfromtxt¶)

Daidalos. “OPEN NOTEBOOKS.” How to Perform Mathematical Operations on Array

Elements in Python ?, 2 Aug. 2019, moonbooks.org/Articles/How-to-perform-mathematical-

operations-on-array-elements-in-python-/.

