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Abstract 

In wildland firefighting it is useful to know how a fire might spread in order to mitigate 

risk to the firefighters and prioritize what areas of the wildfire to attack. As GIS analysts who 

understand remote sensing, we have the ability to measure many of the key determining factors 

for how a fire will spread such as terrain, ground cover, and plant “wetness” and could even 

collect data from wildland firefighters in the field and interpolate between them to get a big 

picture of conditions on the ground. We should, therefore, be able to simulate with some degree 

of accuracy how a fire will spread by assigning a percent chance of ignition to each pixel in a 

raster. Depending on the needs of the model we could design a very simple solution that doesn’t 

account for many variables but would be easier to develop, or a very complex solution that could 

achieve a very high degree of accuracy, constantly update variables, and even start to predict 

how the input variables will interact and change over time. This paper will explore current 

wildfire forecasting and modeling techniques, and applications, and, as a proof of concept, 

demonstrate simulating a hypothetical fire in python with a cellular automata model that is easier 

to develop, and highly flexible in exchange for some degree of accuracy. 

 

Introduction 

Current Literature 

A multitude of programs and tools already exist for analyzing data, and forecasting how a 

particular wildfire might spread. The methods utilized, and the data required to run each model is 

extremely varied. Current models have many strengths and weaknesses . In wildland firefighting 

and modeling of fire, there are a wide variety of needs and often underutilized data. For example 

the Kestrel fire weather unit measures fine dead fuel moisture, probability of ignition, dew point 

temperature, heat stress index, current wind speed , wind direction, crosswind, temperature, 

barometric pressure, pressure trend, altitude and density altitude, these units however are mostly 

used by individual firefighters to help predict the behavior of a fire, instead of for collecting data 

to get a a big picture of what might happen to the fire. 

 Jiang, W et al, in their 2020 article, conceptualized a model very similar to the one 

proposed in this paper. They explained that, “cellular automata models are gaining momentum in 

recent years since their simple structure and low computational complexity when simulating 

forest fires.” Their paper focused more specifically on modeling fires at the wildland urban 

interface, where manmade structures and homes have a significant impact on the way that a fire 

spreads. That work is certainly useful, but adds data requirements, namely data about the 

location and characteristics of manmade structures, to the model, which treats them as a separate 

type of cell in the automata model. In order to enable the model that I have proposed to remain 

flexible, I would suggest instead experimenting with using such valuable datasets to find a 

formula that can adjust the flammability/chance of ignition in the initial raster so that houses take 

longer to burn than wild land areas, in a way that at least mostly matches with reality. 

 In, “ A GIS-based fire spread simulator integrating a simplified 

physical wildland fire model and a wind field model” The authors explain that among numerous 

wildfire models which have already been developed they, “can be classified 

into different types according to the nature of their construction: physical, semi-physical 

or empirical,” and that, “although the nomenclature varies. Some authors argue that for a model 

to be classified as physical it must cater for both the physics and chemistry of the fire spread; 

semi-physical models are defined as those that seek to represent only the physics of the problem; 

and empirical models are those based on a phenomenological description or statistical regression 
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of observed fire behaviour. According to the physical process modelled, wildland fire models 

can also be grouped as ground fires, surface fires, crown fires and spotting models.” (Prieto 

Herráez, D et al., 2007) By those classifications, the model I have proposed would best be 

described as an empirical model, however, while it doesn’t forecast how each individual variable 

will change over time, its ability to run given a single initial value for each cell, allowing the user 

to determine how that value is calculated, means that the results could probably come close, at 

least for the first few “generations” to the predictions of some physical, or semi physical models. 

 Prieto Herráez, D et. al. briefly mentioned Rothermel’s model (1972), which could have 

been worth looking into further while writing this program, however the plan for the proof of 

concept here, is to generate a raster full of random values and to achieve a result that visually 

matches the reality of how a wildfire might spread. It’s possible that any formula which is 

traditionally used to accurately depict a fire spreading might not achieve such a result when the 

value from one cell to another is completely random and follows no gradual trends whatsoever. 

Also,  Rothermel’s model and the model developed by the authors of “A GIS-based fire spread 

simulator integrating a simplified physical wildland fire model and a wind field model,” require 

very specific input perimeters that would severely limit the flexibility of this program. That 

being said, the benefit of using GIS is discussed, namely that it allows for near-real time updates 

to the model, and that they can run a directional wind model separately or in combination with 

the fire-spread model, which would be useful for the model I have proposed. 

 Much like Jiang, W et al did in the first paper I discussed, the authors of, “Wildland Fire 

Spread Modeling Using Convolutional Neural Networks,” considered the need to model 

wildfires in a way that is not as computationally costly as many of the current models, but 

instead of using a cellular automata model, they decided to take a machine learning approach. 

They made some useful notes for developing any wildfire forecasting model. “The impact of 

wind on wildland fire spread generally follows a power law where the exponent and pre-factor 

are related to the fuel type. The impact of fuel moisture content on wildland fire spread is 

generally modeled as strongly linear or weakly exponential based on the fuel type.” They did an 

excellent job of summarizing Rothermel’s model, noting that it, “uses empirical correlations for 

heat source and sink terms [1]. The baseline rate of spread (with no wind or slope) is based on 

fuel density, type, and moisture content. The impact of wind and slope is modeled as a multiplier 

of the baseline rate of spread. Although developed to determine the rate of spread from a single 

ignition source in a single direction, these models have been expanded to work in two-

dimensions using Huygens’ principle” These notes could prove useful for developing accurate 

pre-processing algorithms given different input data for my model instead of relying purely on 

user intuition and experimentation. Based on their work I believe it also may be possible to feed 

a CNN different sample data sets and outcomes to develop the best possible pre-processing 

algorithm for a wide variety of input sets for my cellular automata model, and store a library of 

the best options that users could pick from. 

 In their paper titled “High-Resolution Rapid Refresh Model Data Analytics Derived on 

the Open Science Grid to Assist Wildland Fire Weather Assessment,” Brian k. Blaylock 

John d. Horel and Chris Galli discussed a novel approach for the processing, analysis, and 

storage of large atmospheric datasets, which they acknowledge is useful for flagging outlier wind 

and weather conditions that would be of primary concern to wildland firefighters and useful for 

testing wildland fire models. Upon close inspection there isn’t much they discussed that I could 

use for my very simplistic model, but their assertion that, “continued and accelerated production 
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of data by [big data] sources and forthcoming technologies poses data management and data 

analysis challenges common to other disciplines,” does give demonstrate that there is a niche for 

such a simplified model that can account for practically any input. 

 Ying Xie, and Minggang Peng in their 2017 article wrote about the use of ensemble 

learning, basically assembling multiple learners to solve a statistical problem, and touted the 

benefits of random forests in predicting and modeling wildfires. Although machine learning has 

already come up while discussing a previously mentioned paper, it’s worth noting that ensemble 

learning outperformed the standar machine learning and that they were able to test the algorithms 

on forest fire datasets in the UCI machine learning repository, as it could prove useful for testing 

pre-processing algorithms for the model proposed in this paper on a some of that data if one 

could publicly access it. 

 The developers of IRIS, a rapid response fire forecast model, had similar goals in mind to 

the cellular automata model proposed here, and much of what they mention is relevant. For one 

they assert that while, “fire models range from tools such as BehavePlus and FARSITE, which 

are based on the well-documented fire spread equations of Rothermel, to advanced 3D 

computational fluid dynamics and combustion simulation models, such as FIRETEC and WFDS, 

each model has its advantages and disadvantages which depend primarily on the computational 

cost, data requirements, accuracy, robustness and transferability” (Giannaros, T. M, 2019). And 

to their point, even their own model is very limited, requiring as inputs; a mesoscale analysis and 

forecast, high resolution topography and land use data, and ultra high resolution (100m) fuel and 

topographic data, while at the same time, the model does not benefit from additional input data. 

 Finally Page et. al in their article from 2017 Evaluated NDFD weather forcast as a model 

input for forecasting the behavior of wildland fires because, “Wildland fire managers in the 

United States currently utilize the gridded forecasts from the National Digital 

Forecast Database (NDFD)”. They found that the forecasts were generally reliable except that 

they under-predicted higher wind speeds, which is quite useful to know for anyone modeling 

wildfires, and also gave some potentially useful information about the behavior of wildfires in 

general. Of note is that, “moisture tends to dampen fire spread as a result of the high 

specific heat of water, and the local wind field enhances forward fire spread and intensity 

by increasing both the rate of combustion and by directing hot combustion products toward 

unburned fuels.” They also say, “Near-surface wind speed and direction are affected by terrain 

and vegetation through mechanisms such as channeling or sheltering. Local and large-scale 

variations in terrain shape, orientation, and complexity can result in wind flows through 

valleys that can override and/or enhance synoptic winds. Likewise, vegetation type 

and size can alter the magnitude of the wind flow near the surface as a result of the effects of 

bulk drag from crown foliage.” That information demonstrates the usefulness of a model like the 

one proposed for this paper that can use almost any data source, such as a raster interpolated 

from point data collected by firefighters on the ground for example, to potentially increase its 

accuracy. 

 

 

Materials and methods 

For the demonstration, no real world data is necessary. The code creates a raster-like 

board in python with random values assigned to each cell. This is not a realistic representation 

but does demonstrate “fire” spreading across a grid where some cells ignite faster than others as 
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a proof of concept. Expressing chance of ignition as a percentage allows for a variety of inputs 

tailored to what data is currently available to the user. 

 

Results 

The demonstration shows un-burnt areas as a blank space and burning or burnt areas as 

an, “X”. The python script assigns random values to the cells on a board, or in other words, a 

raster, and shows any cell with a “chance of ignition value” of greater than 99 as a burning or 

burnt cell. The code checks if any adjacent cells return as “True” (have a value greater than 99) 

and increases the chance of ignition of the un-burnt cells adjacent to cells that are on fire. Once a 

non-burning cell reaches a value of 100 or greater it is considered fire and remains at 100. 

Anything below 25, in this hypothetical, represents an area that could only burn at very extreme 

temperatures, such as roads, areas with little flammable ground cover, or low lying water 

saturated earth, and will remain un-burnt by the wildfire. Because this is a proof of concept, it is 

set up to assign a random value to each cell in the grid and the user defines the size of the raster 

(or grid). I recommended 20x70 because it fills the default command module window. 

Successful testing showed a mostly blank grid that fit the default size of the command module, 

and a small number of cells were set "on fire", represented by an "X" in the initial state. Pressing 

"Enter" repeatedly added a new "generation" of the cellular model where the fire had spread out 

from the original points of ignition. It looks like a reasonably accurate approximation of a fire 

spreading across a map for about 40-60 new generations (at that point, most of the flammable 

materials on a 20x70 grid have usually already burned). 

 

 

Conclusions 

This python code was a successful test and proof of concept for modeling wildfire with a 

cellular automata model. It would, however, be more intuitive to use in GIS instead of the 

command module, which is a future goal for this work. In GIS, any available inputs will 

determine the initial, “chance of ignition” values in the grid after some pre-processing. This 

allows for a significant degree of flexibility because that value can be calculated given whatever 

data is currently available to the analyst. For example, if the analyst only has "dryness" for each 

cell in the grid (calculated from landsat imagery), they can run the model even with that very 

limited dataset, but they could also combine multiple layers, like perhaps (1/2*dryness 

percentage) + (1/2*slope percentage[because heat rises]) and the model would still hold 

somewhat true. It would also be useful to include this modeling tool in a toolbox with an open-

sourced library of preprocessing tools for any combination of datasets. Resampling, for example, 

would be necessary in most cases in order to start with a pre-determined pixel resolution and a 

pre determined time interval for each new generation of the raster grid. This way we will be able 

to incorporate existing scientific understanding about the velocity (distance/time) of wildfires. It 

is noteworthy however, that this method of modeling the spread of a fire trades some accuracy 

for flexibility. For example, the model in its current state would be able to utilize windspeed data 

to increase the likelihood of ignition for a given cell, but would not be able to consider the 

direction. One future goal should certainly be to add a place for a directional raster as an input as 

well. This way, a user could have the option to include the direction of several factors such as a 

slope, and the wind, to significantly increase the accuracy of the model. Because of the 

limitations to the accuracy of this model, and given its uncommon ability to utilize almost any 



 
 

Lougee Page 5 
 

information that is available, it would be less useful for long-term forecasting and planning, but 

more useful for fast decision making and responses to sudden changes in conditions. 

 

References 

Agranat, V., & Perminov, V. (2020). Mathematical modeling of wildland fire initiation and 

spread. Environmental Modelling and Software, 125. https://doi-org.proxygsu-

nga1.galileo.usg.edu/10.1016/j.envsoft.2020.104640  

Blaylock, B. K., Horel, J. D., & Galli, C. (2018). High-Resolution Rapid Refresh Model Data 

Analytics Derived on the Open Science Grid to Assist Wildland Fire Weather Assessment. 

Journal of Atmospheric & Oceanic Technology, 35(11), 2213–2227. 

https://doi.org/10.1175/JTECH-D-18-0073.1 

Cruz, M. G., Alexander, M. E., Sullivan, A. L., Gould, J. S., & Kilinc, M. (2018). Assessing 

improvements in models used to operationally predict wildland fire rate of 

spread. Environmental Modelling and Software, 105, 54–63. https://doi-org.proxygsu-

nga1.galileo.usg.edu/10.1016/j.envsoft.2018.03.027  

Giannaros, T. M., Kotroni, V., & Lagouvardos, K. (2019). IRIS – Rapid response fire spread 

forecasting system: Development, calibration and evaluation. Agricultural and Forest 

Meteorology, 279. https://doi.org/10.1016/j.agrformet.2019.107745 

Hodges, J. L., & Lattimer, B. Y. (2019). Wildland Fire Spread Modeling Using Convolutional 

Neural Networks. Fire Technology, 55(6), 2115–2142. https://doi.org/10.1007/s10694-019-

00846-4 

Jiang, W., Wang, F., Fang, L., Zheng, X., Qiao, X., Li, Z., & Meng, Q. (2020). Modelling of 

Wildland-Urban Interface Fire Spread with the Heterogeneous Cellular Automata Model. 

Environmental Modelling and Software. https://doi.org/10.1016/j.envsoft.2020.104895 

Linn, R. R., Goodrick, S. L., Brambilla, S., Brown, M. J., Middleton, R. S., O’Brien, J. J., & 

Hiers, J. K. (2020). QUIC-fire: A fast-running simulation tool for prescribed fire 

planning. Environmental Modelling and Software, 125. https://doi-org.proxygsu-

nga1.galileo.usg.edu/10.1016/j.envsoft.2019.104616  

Page, W. G., Wagenbrenner, N. S., Butler, B. W., Forthofer, J. M., & Gibson, C. (2018). An 

Evaluation of NDFD Weather Forecasts for Wildland Fire Behavior Prediction. Weather & 

Forecasting, 33(1), 301–315. https://doi-org.proxygsu-nga1.galileo.usg.edu/10.1175/WAF-

D-17-0121.1  

Prieto Herráez, D., Asensio Sevilla, M. I., Ferragut Canals, L., Cascón Barbero, J. M., & Morillo 

Rodríguez, A. (2017). A GIS-based fire spread simulator integrating a simplified physical 

wildland fire model and a wind field model. International Journal of Geographical 

Information Science, 31(11), 2142. https://doi.org/10.1080/13658816.2017.1334889 

Xie, Y., & Peng, M. (2019). Forest fire forecasting using ensemble learning approaches. Neural   

Computing & Applications, 31(9), 4541–4550. https://doi.org/10.1007/s00521-018-3515-0 

https://medium.com/better-programming/how-to-write-conwells-game-of-life-in-python-

c6eca19c4676 

 

https://doi-org.proxygsu-nga1.galileo.usg.edu/10.1016/j.envsoft.2020.104640
https://doi-org.proxygsu-nga1.galileo.usg.edu/10.1016/j.envsoft.2020.104640
https://doi-org.proxygsu-nga1.galileo.usg.edu/10.1016/j.envsoft.2018.03.027
https://doi-org.proxygsu-nga1.galileo.usg.edu/10.1016/j.envsoft.2018.03.027
https://doi-org.proxygsu-nga1.galileo.usg.edu/10.1175/WAF-D-17-0121.1
https://doi-org.proxygsu-nga1.galileo.usg.edu/10.1175/WAF-D-17-0121.1
https://doi.org/10.1007/s00521-018-3515-0
https://medium.com/better-programming/how-to-write-conwells-game-of-life-in-python-c6eca19c4676
https://medium.com/better-programming/how-to-write-conwells-game-of-life-in-python-c6eca19c4676


 
 

Lougee Page 6 
 

Appendix 

Code 

# adapted (for generating and interpreting randomized raster data) from Game of Life code 

written by Martin A. Aaberge 

from random import randint 

class Cell: 

    def __init__(chance): # Class holding initial status of cells (0 to 99 chance of ignition). Ability 

to set and fetch new statuses with functions "set" and "get"  

        chance._status = randint(0,99) 

    def set_newvalue(chance): #sets the cell status to newvalue# 

        if chance._status < 25: 

            chance._status = chance._status 

        elif chance._status in range(25,40): 

            chance._status = chance._status + 1 

        elif chance._status in range(40,70): 

            chance._status = chance._status + 5 

        elif chance._status in range(70,99): 

            chance._status = chance._status + 20 

        else: 

            chance._status = 100 

    def set_oldvalue(chance): 

        chance._status = chance._status 

    def set_Fire(chance): #sets the cell status to Fire# 

        chance._status = 100 

    def is_Fire(chance): #checks if the cell is on fire returns True if it is Fire, False if not#  

        if chance._status > 99: 

            return True 

        return False 

    def get_print_character(chance): #returns character to print on the board# 

        if chance.is_Fire(): 

            return 'X' 

        return ' ' 

 

class Board: #(raster)# 

    def __init__(chance , rows , columns): #constructor populates the grid with cells.# 

        chance._rows = rows 

        chance._columns = columns    

        chance._grid = [[Cell() for column_cells in range(chance._columns)] for row_cells in 

range(chance._rows)] 
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        chance._generate_board() 

    def draw_board(chance): #draws the actual board in the terminal# 

        print('\n'*10) 

        print('printing board') 

        for row in chance._grid: 

            for column in row: 

                print (column.get_print_character(),end='') 

            print () #creates a new line pr. row# 

    def _generate_board(chance): #sets the random state of all cells# 

        for row in chance._grid: 

            for column in row: #there is a 0.5% chance the cells spawn as fire.# 

                firestart_number = randint(0,199) 

                if firestart_number == 1: 

                    column.set_Fire() 

    def update_board(chance): # updates the board based on the check of each cell previous 

generation and cells list for non-burning cells to burn and cells to keep burning# 

        goes_Fire = [] #empty lists to put cells into# 

        gets_newvalue = [] 

        keeps_oldvalue = [] 

        for row in range(len(chance._grid)): 

            for column in range(len(chance._grid[row])): #check neighbor pr. square# 

                check_neighbor = chance.check_neighbor(row , column) 

                burning_neighbors_count = [] 

                for neighbor_cell in check_neighbor: #check status for neighbor_cell# 

                    if neighbor_cell.is_Fire(): 

                        burning_neighbors_count.append(neighbor_cell) 

                cell_object = chance._grid[row][column] 

                status_main_cell = cell_object.is_Fire() 

                if status_main_cell == True: # If the cell is burning keeps it burnt, otherwise checks 

the neighbor status# 

                    goes_Fire.append(cell_object) 

                else: 

                    if len(burning_neighbors_count) < 1: 

                        keeps_oldvalue.append(cell_object) 

                    elif len(burning_neighbors_count) >= 1: 

                        gets_newvalue.append(cell_object) 

        for cell_items in goes_Fire: #set cell statuses# 

            cell_items.set_Fire() 

        for cell_items in gets_newvalue:  

            cell_items.set_newvalue() 
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        for cell_items in keeps_oldvalue: 

            cell_items.set_oldvalue() 

    def check_neighbor(chance, check_row , check_column): #method that checks neighbors of 

all cells, lists valid neighbors so the update method can set the new status. min max is depth of 

search# 

        search_min = -1 

        search_max = 2 

        neighbor_list = [] #an empty list to append neighbors into# 

        for row in range(search_min,search_max): 

            for column in range(search_min,search_max): 

                neighbor_row = check_row + row 

                neighbor_column = check_column + column  

                valid_neighbor = True 

                if (neighbor_row) == check_row and (neighbor_column) == check_column: 

                    valid_neighbor = False 

                if (neighbor_row) < 0 or (neighbor_row) >= chance._rows: 

                    valid_neighbor = False 

                if (neighbor_column) < 0 or (neighbor_column) >= chance._columns: 

                    valid_neighbor = False 

                if valid_neighbor: 

                    neighbor_list.append(chance._grid[neighbor_row][neighbor_column]) 

        return neighbor_list 

 

def main(): 

    user_rows=int(input('how many rows? (20 recommended) ')) 

    user_columns=int(input('how many columns? (70 recommended) ')) 

    fire_model_board=Board(user_rows,user_columns) 

    #fire_model_board = Board(20,70) #remove three lines above and the first "#" in this line for 

hard coded raster (board) sized to fit the default size of the command console# 

    fire_model_board.draw_board() #runs the first iteration of the board (or raster)# 

    user_action = '' 

    while user_action != 'q': 

        user_action = input('Press enter to add generation or q to quit:') 

        if user_action == '': 

            fire_model_board.update_board() 

            fire_model_board.draw_board() 

main() 
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