A Stand-Alone NDVI Tool using Python 3.7,
GDAL, NumPy and Matplotlib

GISC 3200K
PROGRAMMING FOR GEOSPATIAL SCIENCE AND TECHNOLOGY

DR. HUIDAE CHO
PRESENTED BY MEGHAN TOUAT



I_]NG UNIVERSITY o
MNORTH GEORGIA

Abstract

The objective of this project was to determine MDY could

accurately be performed on a Landsat 8 GeoTiif image without
using ESRI software or API's. A MOV Pyihon script was
created that reads a Landsat 8 GeoTif file with GDAL, assigns

the red and near nfrared bands to NumPy arrays, calculates
MOV, creates a new GeaTiff and plots it using Matplotliz. All
values within the plot are between -1 and 1, since NOWI is 3

ratio of red fo near infrared.

(NIR - Red)
NDVI = ——8—
(NIR + Red)

Background

Python is an object-aoriented programming langusge
inwentad in 1981, It's known mainly for its eass of use,
readability and adaptability. For this project, version 3.7 was
used.

Gaospatial Data Abstraction Library (GDAL) is a librany for

reading and wnting raster and vector geospatial data
created by the Open Source Geospatial Foundation

(DS Geaa).

MumPy is 3 common Python library usad for miulti-

dimensional arrays and matrices, and for its high level
mathematical functions.

Matplotlib is a 20D plotting library Fython and provides an
object-oriented AP for integrating plots with GUI tools ke
Tkanter.

Mormalzed Difference Vepgetation Index {MDVI} quantifies
vegetation by measuring the difference between near-

infrared {which vegetation strongly reflects) and red light
(which wegetation absorbs)

Objectives

The objeciive of this project was to determine if OV could

accurately be performed on a Landsat 8 GeoTiff image
without using ESEI software or AP's, Anmmcﬁve Was
determining if a complete and functioning Python code could

be compiled that was also accuraie and useful in the day 1o
day life of a Geospatial Analyst.

Methods

Head Landsat &
Hed and NIR
bands with
GDAL

A Stand-Alone NDVI Tool using Pvthon 3.7, GDAL, NumPy and Matplotlib

MMeghan Touat
Lewis F. Rogers Institute for Environimental and Spatial Analvsis

Flot the NDVI
GeoTIl using

Matplothb

et band
statistics for
later GeoTiff

1

Open and read
the NDVI
Geo T with
GDAL

Head Red and
MIE bands Into a
2201t NumPy
array

1

Save and fully
close the new
MNDVI GeoT It

Preform the
NDVI algorithm

t

Write the NDVI
output into the
GeoTiff

Create a new
GeoTIff for the
MNDVI Image

Set the datum
and the
projection

Results

The results of this script are as expected. There was a “frue
dnnde by zera” warning which occurs when the NDWI algonithm
Is runming, but the tool still plots the raster effectively. ¥When
added as a dataset in ESRI software, there are no issues with
datum or projecton, but the GeoTiff does import a5 black and
white instead of the teal/purple color scheme added by
Matplotlib. A “goicha” was found when creating the new NDWI
(zeo T, in that the file must be created, saved and closed with
the WOV MumPy array data before plotting successfully. This is
due to 3 catch in the Matplothb library; there must be a
‘completed” GeaTiff image before it can be plotted, thus GOAL
was again used fo read in the file.

There was also s=ome dificulty with managmmg data types within
the MumPy arrays. It gensrally appears that GODAL, NumPy and

Matplotic work best in unison when the array data type is 3
single precision float {sign bit, & bits exponant, 23 bits
mantissa), as opposed to an nteger or even double precision

float. A "np.where” clause was also implemented to process the
black mask (no data) values Landsat 8 tiles typically have. The
NMumPy clause parses the cells, and if the cell value is not O,

the MOV algonthm is performead. However, if the cell value is 0,
it is changed to a valus of -1, or no data. Becauss of this, the
Landsat & mask appears purple, with a value of -1. All other

cells within the image thus contain values ranging from -0.80 1o
1, as per typical NOWV standards. Statistics were calculated for
the MOV GeoTdf to measure the accuracy and precision of the

NDCA algorthm when used in combination with the “np.whers”
argurnent.

1030

2000

D0

G000

0 1000 2000 3000 4000 5000 6000 TOOOD

GISC 320K
Programming for Geospatial Science
and Technology
Dr. Huidae Cho

Results Cont...

50

A

4550

450

4T

4750

£ I o 4300 Sl £ i J B
R RRRRRRRRRRRRREREESDEEDEEn DD

Conclusion
]

By using all open source software, a3 betler understanding of

Python and the gecspatial functioning of the MOV tool was
gained. Since all open source software is free, innovation and
customization for this project allowed the exploration of

different libraries in arder to determine the best method of
calculating MOWI. This MOV scnpt is not only simple, but
extremely effectve in preducing an accurate 20 NDVI GeoTif

analysis without the use or ESRI software or other API's.

Further research for this project includes: removing the
Land=at 8 mask, adding a coordinate system to the axes,
changing the color scheme of the plot, and potentially

pansharpening the Landsat 8 tile to achieve a 13m NDVI
rather than a 30m ons. In addition to this output, a histoncal
MOV analysis could be completed for this tile, due to the high

temporal resolution of the Landsat 2 satellite. A simple MOV
Python toolbox could be created as well, in order to

streamline data procsssing.
e

References
]

Dr. Huidae Cho
Zac Miller

The UNMG IESA Depariment
www.gdal.org (GDAL documentation page)



http://www.gdal.org/

import gdal

IMport numpy 23 np

import matplotlib.pyplot a= pltc
#https:ffgﬂa;.D:gﬁt:tu:ia;sfraster_api_t:t.htm;

#¥O0pen the Image
red = gdal.Cpen ("LCO
NIE = gdal.Open ("LCO

LITF 020036 20191103 201%1115 01 T1 B4.tif"™)

LITF 020036 20191103 201%1115 01 T1 BS.tif"™)

#Get info from red band

cols = red.RasterXS5ize snumber columns

rows = red.Raster¥S5ize snumber rows

proj = red.GetProjection() #get projection

trans = red.GetGeoTransform() #Fget transformation

bands = red.RasterCount #Fgives number of bands

meta = red.GetMetadatal() #gives metadata of the file (optional)

Fwe don't have to repeat this code™™ for NIR because all band info should ke identical

#BEead the ERed band and the Near Infrared band as 32bt floating numpy arrays
bandd4 = red.zetRasterBand(l) .ReadAsArray () .astype (np.float3d)
bands = NIR.GetRasterBand(l) .ReadsArray () .astype (np.float3d)

#do the HDVI math

nl = (bandS - band4)

nZ = (bandS + bandg)

np.seterr (divide="ignore', invalid='"ignore')#allow it to divide by zero, since we'll have negative values
#1if results aren't from -1 to 1 (wvalues of the bkblack background), use this:

ndvi = np.where (n2 '= 0, (nl)/ (n2), -1)

#Create the output NDVI image
driver = gdal.GetDriverByName ('GTiff"') #FGTiff is the read only driver for this specific instance

ndvi image = driver.Create("HDVI image.tifi", cols, rows, 1, gdal.GDT Float3Z) Ffnow create new file. file name, cols(x size), rows(y size), bands, array type

#5et the datum and the projection
ndvi image.sSetGeolransform(trans) Fgive it the same datum as before
ndvi image.SetFrojection(proj) Fgive it the same projection as before

#FWrite the data into kband 1 of the new image
ndvi image.GetRasterBand(l) .WritelArray (ndvi)
stat = ndvli image.GetRasterBand(l) .GetStatistics(l,1) #GetStatistics(0,1) will return Min, Max, Mean, StdDew

ndvi image.GetRasterBand(l) .5etotatistics(stat[0]), stat[l], stat[l], stat[3]) F3et stats from above as indexed wvalues

#zave and close ndvi image

ndvi image = None #this is apparently a "gotcha"™ and must be done
Fnow open the new image
ndvi image = gdal.Open("NDVI image.Tif")

Fread it in

ndvi image = ndvli image.GetRasterBand(l) .ReadAsArray() .astype(np.float3d)
#fplot the NDVI image

plt.imshow (ndvi image) fprepares ndvi image data to be shown

plt.show()




O 1000 2000 3000 4000 5000 6000 7000

2300 2400 2500 2600 2700 2800




