
A Stand-Alone NDVI Tool using Python 3.7,

GDAL, NumPy and Matplotlib

GISC 3200K
PROGRAMMING FOR GEOSPATIAL SCIENCE AND TECHNOLOGY
DR. HUIDAE CHO
PRESENTED BY MEGHAN TOUAT

A Stand-Alone NDVI Tool using Python 3.7, GDAL, NumPy and Matplotlib
Meghan Touat

Lewis F. Rogers Institute for Environmental and Spatial Analysis

Abstract

The objective of this project was to determine if NDVI could

accurately be performed on a Landsat 8 GeoTiff image without

using ESRI software or API’s. A NDVI Python script was

created that reads a Landsat 8 GeoTiff file with GDAL, assigns

the red and near infrared bands to NumPy arrays, calculates

NDVI, creates a new GeoTiff and plots it using Matplotlib. All

values within the plot are between -1 and 1, since NDVI is a

ratio of red to near infrared.

Background

Python is an object-oriented programming language

invented in 1991. It’s known mainly for its ease of use,

readability and adaptability. For this project, version 3.7 was

used.

Geospatial Data Abstraction Library (GDAL) is a library for

reading and writing raster and vector geospatial data

created by the Open Source Geospatial Foundation

(OSGeo).

NumPy is a common Python library used for multi-

dimensional arrays and matrices, and for its high level

mathematical functions.

Matplotlib is a 2D plotting library Python and provides an

object-oriented API for integrating plots with GUI tools like

Tkinter.

Normalized Difference Vegetation Index (NDVI) quantifies

vegetation by measuring the difference between near-

infrared (which vegetation strongly reflects) and red light

(which vegetation absorbs)

Methods Results Results Cont…

References

Dr. Huidae Cho

Zac Miller

The UNG IESA Department

www.gdal.org (GDAL documentation page)

The results of this script are as expected. There was a “true

divide by zero” warning which occurs when the NDVI algorithm

is running, but the tool still plots the raster effectively. When

added as a dataset in ESRI software, there are no issues with

datum or projection, but the GeoTiff does import as black and

white instead of the teal/purple color scheme added by

Matplotlib. A “gotcha” was found when creating the new NDVI

GeoTiff, in that the file must be created, saved and closed with

the NDVI NumPy array data before plotting successfully. This is

due to a catch in the Matplotlib library; there must be a

“completed” GeoTiff image before it can be plotted, thus GDAL

was again used to read in the file.

There was also some difficulty with managing data types within

the NumPy arrays. It generally appears that GDAL, NumPy and

Matplotlib work best in unison when the array data type is a

single precision float (sign bit, 8 bits exponent, 23 bits

mantissa), as opposed to an integer or even double precision

float. A “np.where” clause was also implemented to process the

black mask (no data) values Landsat 8 tiles typically have. The

NumPy clause parses the cells, and if the cell value is not 0,

the NDVI algorithm is performed. However, if the cell value is 0,

it is changed to a value of -1, or no data. Because of this, the

Landsat 8 mask appears purple, with a value of -1. All other

cells within the image thus contain values ranging from -0.99 to

1, as per typical NDVI standards. Statistics were calculated for

the NDVI GeoTiff to measure the accuracy and precision of the

NDVI algorithm when used in combination with the “np.where”

argument.

Objectives

The objective of this project was to determine if NDVI could

accurately be performed on a Landsat 8 GeoTiff image

without using ESRI software or API’s. Another objective was

determining if a complete and functioning Python code could

be compiled that was also accurate and useful in the day to

day life of a Geospatial Analyst.

Conclusion

By using all open source software, a better understanding of

Python and the geospatial functioning of the NDVI tool was

gained. Since all open source software is free, innovation and

customization for this project allowed the exploration of

different libraries in order to determine the best method of

calculating NDVI. This NDVI script is not only simple, but

extremely effective in producing an accurate 2D NDVI GeoTiff

analysis without the use or ESRI software or other API’s.

Further research for this project includes: removing the

Landsat 8 mask, adding a coordinate system to the axes,

changing the color scheme of the plot, and potentially

pansharpening the Landsat 8 tile to achieve a 15m NDVI

rather than a 30m one. In addition to this output, a historical

NDVI analysis could be completed for this tile, due to the high

temporal resolution of the Landsat 8 satellite. A simple NDVI

Python toolbox could be created as well, in order to

streamline data processing.

GISC 3200K

Programming for Geospatial Science

and Technology

Dr. Huidae Cho

Read Landsat 8 Red and

NIR bands with GDAL

Read Red and NIR bands

into a 32bit NumPy array

Preform the NDVI

algorithm

Create a new GeoTiff for

the NDVI image

Get band statistics for

later GeoTiff

Set the datum and the

projection

Write the NDVI output

into the GeoTiff

Plot the NDVI GeoTiff

using Matplotlib

Open and read the NDVI

GeoTiff with GDAL

Save and fully close the

new NDVI GeoTiff

http://www.gdal.org/

