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Abstract

Common pixel by pixel or cell by cell comparison methods often fail to take into account necessary
spatial information with in raster data. Thus, spatially aware comparison indices are key for im-
portant research and analysis which utilizes categorical raster datasets. Costanza’s moving window
and multi-resolution index provide a base with which comparison indices can be computed for tem-
poral categorical datasets. However, there is no maintained system which provides these indices
and any base level implementation will be inherently slow due to the linearly iterative nature of the
indices. Proposed are two algorithms which can effectively split data between parallel CPU cores
and speed up computation for both similarity indices exponentially. Additional tests and figures
are presented detailing outputs and capabilities within a common scripting language for GIS.

1 Introduction & background

Within geospatial research, categorical raster datasets are widely used as they are mosaics and
matrices reflective of real world data. Common examples of categorical spatial data includes the
National Land-cover Database (NLCD) (Homer et al., 2004) or the State Soil Geographic data base
(STATSGO) (Schwarz and Alexander, 1995). Additionally the creation and analysis of categorical
raster data is a key focuses of much research such as land cover & land use (LULC) mapping
(Gonçalves et al., 2011; Hansen et al., 2000), forest disturbance mapping (Senf and Seidl, 2020; Oeser
et al., 2017), and for landscape ecology (Dale, 2000; Riitters, 2019). Within the field of landscape
ecology in particular, understanding spatial patterns is key to proving spatial non-randomness
and analyzing the relationships between geography and the agents of ecological change (Perry
et al., 2002). Common methods for analyzing categorical raster data typically utilize pixel by
pixel approaches and are effective in many cases when comparing coarse data sets such as land use
generated from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery (Friedl et al.,
2010). However when comparing change in higher resolution categorical data sets, pixel by pixel
approaches are not capable of picking up spatial patterns that become more prevalent at finer scales
(Kuhnert et al., 2005; Netzel and Stepinski, 2014). To account for the lack of spatial awareness
in pixel by pixel approaches, several different approaches have been proposed such as the fuzzy
set approach (Hagen, 2003) and various moving window aggregation methods (Kuhnert et al.,
2005; Li and Wu, 2004). Within landscape ecology data transformation methods for analyzing
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spatial patterns can be separated into three types - majority rule aggregation, resampling, and
magnification. Majority rule aggregation area and resampling are similar in the sense that they
are both forms of aggregation which result in coarser raster maps. The differences however lie
with the methods by which each operates, where majority rule based aggregation works through
a moving window where the each window votes on the value with ties broken by a random value,
and resampling works through randomized but systematic sampling of the raster map. Multiple
software’s have implemented different moving window methods such as FRAGSTATS (McGarigal,
1995), Map Comparison Kit (Visser and De Nijs, 2006), Pronto Raster (Hagen-Zanker, 2016), and
GRASS r.pi (Wegmann et al., 2018), and the Spatial Modeling Environment (SME) (Maxwell and
Costanza, 1997; Costanza and Voinov, 2003). However, the moving window and multi-resolution
comparison index as implemented by Costanza (1989) in particular has a large number of interesting
and viable uses as it builds upon the moving window concept within landscape ecology. Designed
as a method to get the goodness of fit between two model outputs, it can effectively take into
account spatial patterns that standard statistical measures, e.g. R2, may fail to take into account.
The multi-resolution index can subsequently be applied for uses such as raster correlation and
temporal change in addition to its initial purpose. SME was the primary method for implementing
the moving window and multiple resolution algorithms having been developed initially by Costanza
and others, however to the knowledge of the Author it is no longer maintained and no other system
offers an implementation.

Proposed is a Python module wherein an algorithm capable of computing the moving window
and multi-resolution comparison indices parallel across the Central Processing Unit (CPU) is im-
plemented. The usage of parallel computing will enable the algorithm to take advantage of modern
computing which can speed up array based math operations in Python and achieve speeds com-
parable to compiled languages such as C and C++ with little overhead (Dalcin et al., 2011; Cai
et al., 2005; Wagner et al., 2017). Additionally, as the Python language has cemented itself solidly
beside R as the primary scripting language for geospatial data science, a Pythonic implementation
is key to enable the incorporation of the multi-resolution comparison index into more workflows.

2 Methods and materials

Within Python the Geospatial Data Abstraction Library (GDAL) (GDAL/OGR Contributors,
2020) in conjunction with the NumPy library (Harris et al., 2020), the algorithm can be imple-
mented while maintaining important spatial data and providing geospatial input and output (I/O).
For parallel processing the Joblib library (Joblib Contributors, 2020) is used as it touts optimized
processing for the NumPy library and its only dependency is Python itself. Through parallel pro-
cessing time of the algorithm can be sped up immensely, however it requires a implementation from
the top down.

2.1 Indices

The moving window and the multi-resolution index are interlinked with the multi-resolution provid-
ing what is essentially a weighted aggregation for the moving window index. The moving window
comparison is defined by Costanza (1989) as

Fw =

∑tw
s=1

[
1−

∑p
i=1 |a1,i−a2,i|

2w2

]
tw

(1)

where Fw is the correlation between 0 and 1 where 1 indicates complete similarity and 0 indicates
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none , w is the window size, s is the index for moving windows, tw is the number of windows with
the window size w, a1,i and a2,i represent the numbers of cells with category i in rasters 1 and
2, respectively, and p is the number of categories. However, Eq. (1) operates off the assumption
that within every window size w, there will be the same number of values. Within geospatial data
this not the case however. To take into account no data cells commonly found in geospatial raster
formats Eq. (1) can be rewritten as

Fw =

∑tw
s=1

[
1−

∑p
i=1 |a1,i−a2,i|

2ns

]
tw

(2)

Eq. (2) safely removes the assumption of the number of real data within a given window by
replacing w2 with ns where ns is the number of data cells in the window. The multiple resolution
coefficient was created by Costanza (1989) to aggregate resolutions into a weighted coefficient and
is defined by

Ft =

∑n
w=1 Fwe

−k(w−1)∑n
w=1 e

−k(w−1) (3)

where n is the total number of window resolutions to iterate, and k is the constant weight where
k = 0 gives all windows the same weight and k = 1 gives the first several resolutions more weight.
The multiple resolution algorithm can give added context to a map scene and effectively extended
the information gleaned from the moving window comparison algorithm.

2.2 Row by row approach

Two different methods for parallel processing were explored. The first version, seen in Algorithm
1, iterates over each row, splits the row into a subset matrix with the required neighbor rows for
window size w, and appends the output vector of Fw values to a shared vector array. This design
is intended to reduce the memory overhead for large datasets and only read a single row and its
neighbors for each core used at a time.

However, problems quickly arise however with this method when the resulting shared vector is
reshaped into the original i, j dimensions of the categorical rasters for the resulting raster map. As
the output Fw values are appended to the shared array, it becomes difficult to append values in the
correct order without using more memory than needed to create a dictionary index or artificially
adding significant time to the process through a forced delay to each queuing subset computation.
Furthermore, as GDAL is used to read geospatial data, serialization issues are encountered when
attempting to iteratively read only certain sections from raster files without ever loading the entire
raster maps to memory. Thusly Algorithm 2 is proposed to approach the issues of Algorithm 1.

2.3 Subsection approach

Algorithm 2 approaches the problem of parallel processing slightly different from Algorithm 1 and
takes a more standard approach to splitting data across cores. While Algorithm 1 continuously
queues a row and its neighbors to a core as they are iterated, Algorithm 2 splits the data sets evenly
across the number of cores being used with the last core taking an even segment plus the remainder
of rows. This method falls more in line with traditional approaches to parallel processing than the
process described in Algorithm 1. Furthermore, Algorithm 2 solves the problems that arise with
Algorithm 1 when appropriately generating output raster maps as each core computation has a
slight delay introduced before starting. This is doable without any significant increases in time as
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Require: w . Window size, single integer
Require: A . Array one
Require: B . Array two
1: d←

⌊
w
2

⌋
. Number to get neighbors of cell

2: i, j ← matrix shape
3: O ← [ ] . Intialize empty vector
4: for ii← A0 → Ai do
5: AM← A(ii−d→ ii+d) . Get subset of matrices A,B with window size w
6: BM← B(ii−d→ ii+d)

7: for jj ← AM,0 → AMn do . Assigned to open core
8: h, w ← shape of matrix subset
9: m← central h index of matrix subset . Middle of row of subset

10: v1← neighbors of window size w for AMatrixm, jj

11: v2← neighbors of window size w for BMatrixm, jj

12: N1, C1←
{

unique values in v1
}
,
{

counts of unique values
}

13: N2, C2←
{

unique values in v2
}
,
{

counts of unique values
}

14: U← N1 ∪N2 . Universal set of unique values
15: for i← |U| do
16: d← |C1i − C2i|

17: f
+←

{
1− d

2w , if d 6= 0

1, otherwise
18: end for
19: end for
20: O

+← f from each core
21: end for
22: Fw ←

∑
( O
i×j )

Algorithm 1: Method 1 for a parallel moving window algorithm
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the delay is minuscule (less than a second) and instead of multiplying the delay by tens of thousands
of rows, it is only multiplied by upwards of tens of cores.

Require: w . Window size, single integer
Require: A . Array one
Require: B . Array two
1: c← number of cores to use
2: i, j ← matrix shape if shape A = shape B
3: s←

⌊
i
c

⌋
. The range for each matrix subsection for each core

4: r ← i mod c . The remainder of cells that will be added to the last core
5: d←

⌊
w
2

⌋
6: O ← [ ]
7: f ← 0
8: for ii← 0→ c do . Get upper boundaries for each matrix subsection

9: g
+←

{
f + s + r, if iic

f + s, otherwise
. Add remainder to last subsection

10: f
+← s

11: end for
12: for ii← g0 → gn do . Create list of full i ranges to split the matricies

13: sl←


[0 : ii + d], if 0

[ii− d : ii], if n

[ii− d : ii + d], otherwise

. Take into account overlapping cells for each section

14: end for
15: for ii← sl do . With each iteration the Worker function is passed to a new core

16: O
+←Worker(A[slii, j], B[slii, j]) . Results for each core are appended in order

17: end for
18: tw ← |O| 6= −1 . Get count of cells that have data
19: Sim←

∑
( O
tw )

Algorithm 2: Method 2 for a parallel moving window algorithm

When the subsections are first computed the cells at the edges lose the neighboring data cells
which would be needed for the window size w. Without being addressed, the loss of data within
the data set will lead to edge artifacts within the output raster map that increase with window
size and ultimately reduce accuracy of the resulting Fw similarity value. To account for lost data
along the edges of each subsection, each boundary is given d additional rows at the beginning and
the end of the subsection where d =

⌊
w
2

⌋
. An exception to how context is added to the edges are

the first and last splits which are only given d rows at the beginning or end of their subsections
respectively. These additional rows are not iterated over outside the subsection they are initially
allocated for since they only serve to re add edge context which is removed by through splitting
the data.

To enable the approach of Algorithm 2 the Worker function as shown in Algorithm 3 is used.
This function facilities the Fw computation across all cores by allowing the initialized object to
compute the range of splits needed before assigning each subset to a separate core for the bulk of the
heavy computation. With the Worker function assigned to each core with respective submatrices,
it firstly checks if the iterated cell is a NoData value, returning a value of −1 to be masked if it is
and continuing the algorithm if it is not. The function subsequently carries out the rest of moving
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window algorithm across the submatrices relying on set operations in conjunction with vectorized
NumPy functions where possible.

1: function Worker(A,B)
2: for i, j ← A[i, j]→ A[n, n] do . Iterate over i, j of matrix
3: if A[i, j] and B[i, j] = NaN then

4: f
+← −1 . Assign the value of −1 if NoData value

5: else
6: v1← neighbors of window size w for A[i, j]
7: v2← neighbors of window size w for B[i, j]
8: N1, C1←

{
unique values in v1

}
,
{

counts of unique values
}

9: N2, C2←
{

unique values in v2
}
,
{

counts of unique values
}

10: U← N1 ∪N2 . Create universal set of unique values
11: for ii← |U| do . Iterate over each unique value
12: d← |C1ii − C2ii| . Subtract count of each unique value

13: f
+←

{
1− d

2w , if d 6= 0

1, otherwise
. If d = 0, then similarity is 1 for A[i, j], B[i, j]

14: end for
15: end if
16: end for
17: return f . Return vector of similarity values computed on core
18: end function

Algorithm 3: Worker function for Algorithm 2

3 Multi-resolution implementation

The most important usage of the moving window index is its incorporation into the weighted
multi-resolution index which will return an improved and more spatially aware similarity index
than that of just a single moving window value. The aggregation occurring with each increasing
window will provide a similarity for an increasing area which can be described by the simple
mathematical expression of

A = (ns × b)× (ns × h) (4)

where ns is the number of data cells in a window, b is the width of each cell in map units, and h is
equal to the height of each cell in map units.

The multi-resolution implementation is subsequently achieved by building upon Algorithm 2
where the parallel processing at each window size (w) iteration is contained within the moving
window object. With it, the relationships between increased window sizes and similarity can be
examined as in Figure 3 in addition to how the method as a whole reflects the similarities between
spatial data.

4 Results & Discussion

When parallelized the time taken for the moving window correlation saw an exponential decrease
in computational time taken, as can be seen in Figure 2, where sensitivity analysis performed for
two datasets with the size 5528 × 5569 shows a negative exponential relationship between time and
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d

d

d

sl21

sl22
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sl24	
+	remainder

d

d

d

Fw(sl11,	sl12)

Fw(sl11,	sl12)

Fw(sl11,	sl12)

Fw(sl11,	sl12)

Core	1

Core	3

Core	2

Core	4

Figure 1: Roughly showing the moving window algorithm split between four CPU cores with
Algorithm 2. The output raster map shows a 3 × 3 comparison where red is 0 and green is 1.

cores used across seven different window sizes. It is important to note that with window sizes less
than 43 a sharp increase in time taken from the first to second core is seen. This increase in time is
due to the time taken to split the data between cores that a single core approach does not contain.
However when a window size greater than 13 is used, the implementation sees greater speeds after
using thee cores. These time improvements are key to the implementation of the multi-resolution
coefficient as without it, the time which the multi-resolution would take to complete for any sized
area would grow linearly with increased window sizes. The effects aggregation with increasing
window sizes can be seen in Figure 4.

With the moving-window index sped up, the relationships between window size and similarity
can be examined. Figure 3 shows that as the window size increases by ten, so too does the similarity
increase with a positive linear curve. Furthermore, Figure 3 shows the weight, k, increases the
overall similarity index by approximately 2%. The weight k = 0, which takes into account all
resulting Fw values, returns a Ft similarity index shown to be 0.8304 (83.04 % similar), where as
the weight of k = 1 returns a similarity index of 0.8119 or 81.19 % similar.

Further information about the relationship between window size and similarity can be inferred
by comparing the common pixel by pixel subtraction index which is expressed mathematically as

F =
Nid

N
(5)

where Nid is the total number of cells which match and N is the total number of cells in a raster
map (Kuhnert et al., 2005).

When applied to the raster data shown in Figure 3, the pixel by pixel similarity of 0.8098
is returned which is only marginally smaller than the Ft value with weight of one. The closeness
between the pixel by pixel similarity index and the multi-resolution index shows the weights working
as intended, while allowing the similarity index to aggregate spatial data. However, there is an
approximate three percent difference between the pixel by pixel subtraction similarity and the Ft

index value with the weight of zero. The increase in seen in the Ft value weighted zero when
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Figure 2: The processing time in seconds it takes to compute the similarity of two NLCD rasters
of size 5528× 5669 across an increasing number of CPU cores and window sizes.
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Figure 3: Both the Fw and total computed Ft values for weights 1 & 0 for the maps on the left.
Additionally shown is the relationship between the Fw index and an increasing window size.
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compared to the pixel by pixel value is expected. This is due to the lack of weight for the smaller
window sizes leading to an Ft value which ultimately will correspond to a larger aggregation area
as described by Eq. (4). The causation of the increasing similarity without weight given can be
visually seen in Figure 4 as each increasing window results in an aggregation area equal to Eq. (4).

Fw	 0 0.25 0.5 0.75 1

w	=	3	:	Fw	=	0.8119 w	=	53	:	Fw	=	0.8346 w	=	103	:	Fw	=	0.8382

Figure 4: Resulting Fw raster map values showing the effects of increased window size on similarity
with insets showing the effects of area aggregation at a small scale. Window sizes from left to right
are 3, 53, and 103.

5 Conclusions

Within in the paper two algorithms are introduced to incorporate both the moving window and
multi-resolution similarity index. Modern implementations of each are needed due to previous
implementations going unmaintained. It is found that the parallel algorithm as implemented with
Python in this paper allows for computationally efficient implementations of the moving window and
its subsequent aggregation index, the multi-resolution index. Further development of a resolution
independent index is underway so as to not only implement the equations proposed by (Costanza,
1989), but build upon and improve them systematically into a new index entirely for landscape
ecology.
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