Pipelines

Dr. Huidae Cho
Department of Civil and Environmental Engineering...New Mexico State University

1   What is pipe flow?

Open-Channel-VS-Pipe-Flow-2-2048.jpg

  • No free surface (flow full)
  • Driven by pressure head difference
  • Analyzed using Darcy–Weisbach equation

1.1   Key distinction: Open channel vs pipe flow

Open channel flowPipe flow
Free surfaceNo free surface
Driven by slopeDriven by pressure difference
Manning equationDarcy–Weisbach equation

2   Energy equation for pipe flow

General energy equation:

\[ \frac{P_1}{\gamma} + \frac{V_1^2}{2g} + z_1 - h_L = \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + z_2 \]

For constant diameter pipes ($V_1 = V_2$):

\[ h_L = \left(\frac{P_1}{\gamma} + z_1 \right) - \left(\frac{P_2}{\gamma} + z_2 \right) \]

Key points:

  • $h_L$ represents energy dissipation.
  • Hydraulic grade line (HGL): $P/\gamma + z$
  • Energy grade line (EGL): $P/\gamma + z + V^2/(2g)$

3   Head loss model

Major loss (friction):

\[ h_f = f \frac{L}{D} \frac{V^2}{2g} \]

Minor loss:

\[ h_m = K \frac{V^2}{2g} \]

Total head loss:

\[ h_L = h_f + \sum h_m \]

4   Reynolds number

\[ Re = \frac{VD}{\nu} \]

Flow regimes:

  • Laminar: $Re < 2000$
  • Transitional: $2000 \le Re \le 4000$
  • Turbulent: $Re > 4000$

Question:

  • What physical forces compete in $Re$?

5   Example 1: Laminar flow

Given:

  • $\nu = 2.0 \times 10^{-4} \ \text{m}^2/\text{s}$
  • $D = 0.05 \ \text{m}$
  • $L = 20 \ \text{m}$
  • $Q = 1.0 \times 10^{-4} \ \text{m}^3/\text{s}$
  1. Compute velocity:\[ V = \frac{Q}{\pi D^2/4} \]
  2. Compute Reynolds number:\[ Re = \frac{VD}{\nu} \]
  3. Determine regime
  4. If laminar, compute friction factor:\[ f = \frac{64}{Re} \]
  5. Compute head loss:\[ h_f = f \frac{L}{D} \frac{V^2}{2g} \]

Key points:

  • No roughness required.
  • Fully analytical solution.

6   Friction factor in turbulent flow

Colebrook equation:

\[ \frac{1}{\sqrt{f}} = -2 \log_{10} \left( \frac{\varepsilon}{3.7D} + \frac{2.51}{Re\sqrt{f}} \right) \]

Key points:

  • $f$ depends on $Re$.
  • $f$ depends on relative roughness $\varepsilon/D$.

7   Moody diagram

how-to-read-a-moody-chart.jpg

Inputs:

  • Reynolds number
  • Relative roughness $\varepsilon/D$

Output:

  • Friction factor $f$

Important regions:

  • Laminar region
  • Smooth pipe limit
  • Fully rough region

8   Example 2: Turbulent flow

Given:

  • $\nu = 1.0 \times 10^{-6} \ \text{m}^2/\text{s}$
  • $D = 0.20 \ \text{m}$
  • $L = 300 \ \text{m}$
  • $Q = 0.05 \ \text{m}^3/\text{s}$
  • $\varepsilon = 0.046 \ \text{mm}$
  1. Compute velocity:\[ V = \frac{Q}{\pi D^2/4} \]
  2. Compute Reynolds number:\[ Re = \frac{VD}{\nu} \]
  3. Compute relative roughness:\[ \frac{\varepsilon}{D} \]
  4. Read friction factor from Moody diagram
  5. Compute head loss:\[ h_f = f \frac{L}{D} \frac{V^2}{2g} \]

Key points:

  • Roughness matters in turbulent flow.
  • Follow the algorithm step by step.

9   Single pipe workflow

Remember:

  1. Compute velocity:\[ V = \frac{Q}{A} \]
  2. Compute Reynolds number:\[ Re = \frac{VD}{\nu} \]
  3. Determine regime
  4. Obtain friction factor $f$
  5. Compute head loss:\[ h_f = f \frac{L}{D} \frac{V^2}{2g} \]

If you remember this sequence, you can solve any single-pipe problem.

10   Pipe networks preview

Series condition:

\[ h_L = \sum h_{L,i} \]

Parallel conditions:

\[ Q_T = Q_1 + Q_2 \] \[ h_{f,1} = h_{f,2} \]

Next class:

  • We solve network systems.