# Histogram equalization of images

Institute for Environmental and Spatial Analysis...University of North Georgia

## 1   Probability review

### 1.1   Histogram

$h(r_k)=n_k$ and $p(r_k)=\frac{n_k}{n}$

• $r_k$: $k^\text{th}$ gray level
• $n_k$: Number of pixels with $r_k$
• $n$: Total number of pixels
• $h$: Histogram
• $p$: Probability

## 2   Histogram equalization

Input image $r$ is scaled over $[0, 1]$ and output image $s$ is $s=T(r)\quad 0\leq r\leq 1.$

Histogram equalization requires the following conditions:

• $T(r)$ is single-valued and monotonically increasing
• $0\leq T(r)\leq 1$ for $0\leq r\leq 1$

### 2.1   Probability density functions of $r$ and $s$

Using transformations of probability density functions, we can obtain the probability of $s$ as follows: $p_s(s)=p_r(r)\left|\frac{dr}{ds}\right|.$

### 2.2   Transformation for histogram equalization

Let $s=T(r)=\int_0^r p_r(w)dw$, which is monotonically increasing and $0\leq T(r)\leq 1$.

### 2.3   Probability of $s$

\begin{split} \frac{ds}{dr}&=\frac{dT(r)}{dr}\\ &=\frac{d}{dr}\int_0^r p_r(w)dw\\ &=p_r(r)\geq 0 \end{split} and \begin{split} p_s(s)&=p_r(r)\left|\frac{dr}{ds}\right|\\ &=p_r(r)\frac{1}{p_r(r)}\\ &=1\quad 0\leq s\leq 1. \end{split}

### 2.4   Discrete version of $s$

\begin{split} s_k&=T(r_k)\\ &=\sum_{j=0}^k p_r(r_j)\\ &=\sum_{j=0}^k\frac{n_j}{n} \end{split} for $k=0,1,2,\cdots,L-1$.

### 2.5   Why histogram equalization?

• Non-parametric image enhancement
• “Try” to make use of the full gray levels (uniform histogram) $\rightarrow$ High contrast